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ANALYSIS OF SOME LOCAL CLADDING
STRESS CONCENTRATIONS--A PROGRESS REPORT

by

I-Chih Wang and R. W. Weeks

ABSTRACT

As a first step toward the development of fuel-element
failure criteria, a general elasticity solution is derived for a
thick cylindrical shell under mechanical-loading conditions that
can be expressed in the Fourier Series. Appropriate series
are then developed for several loading conditions of interest,
namely, radial and tangential loads due to fuel-pellet bambooing,
a radial pointloading that might result from fuel chips between
fuel pellets and the cladding, and a spiral-line loading that is
probably due to the spiral-wire wrap. Anoutline for numerical
solution of the corresponding creep deformation problems is
also included.

I. INTRODUCTION

Most of the presently available analyses' ™ of fuel elements use
plane-strain assumptions and, therefore, neglect the potential stress and/or
thermal concentrations that may be expected to arise during normal reactor
operation. These local effects may result from the initial form of the fuel,
subsequent fuel cracking, local cladding imperfections, out-of-round effects,
or the spiral-wire wrap that separates the fuel elements in a subassembly.

Near the end of the useful lifetime of a fuel element, the stress,
strain, and/or thermal concentration effects become the dominant factors
in determining both the advent and the mechanism of fuel-element failure.
In the analysis of accident situations, which may occur at any time, the
mechanism of failure will again be influenced by local stresses and hot spots.
\s  developing a better understanding of fuel-element

- shell analysis of the "bambooing," or .




of the fuel pellets, which experience large, radial temperature gradientS.
Local deformations associated with bambooing are most pronounced in fuel
elements subjected to high coolant pressures. The elastic shell analysis
used in the bambooing problem also forms the first step in the investiga-
tion of the local effects caused by fuel cracking and spiral-wire wrap.

In several experimental studies,®”? the bambooing problem has been
observed and identified, but only Blair and Veeder'® appear to have per-
formed any detailed analysis. Blair and Veeder, however, restrict their
analysis to circumferential ridging of the fuel-pellet column due to axial
end loading only and do not consider resultant cladding deformations. Loads
due to spiral-fin-type fuel-element spacers have been treated by Baumann
Shal

The bambooing effect of the cladding has been analyzed as follows:

(1) Determination of the magnitude and distribution of the normal
and tangential loads applied to an initially undeformed cladding in the vicinity
of a pellet-pellet interface, a fuel chip, or the spiral-wire wrap, when the
fuel is subjected to internal heating and pushes against the cladding.

(2) Determination of the local stress distribution in the cladding
that results from the applied loads.

(3) Determination of the resultant elastic and plastic deformation
of the cladding, based upon the stress distribution, empirical constitutive
equations for the cladding, and a given fuel temperature and swelling history.

(4) Development of failure criteria, given the loading and deforma-
tion history of the cladding.

: (5) Verification of analytical approach by means of out-of-reactor
exp?nments using a thermohydraulic testing machine withloads programmed
to simulate the cyclic in-reactor loading conditions.

Using the published stress-distribution expressions!? for (1) and (2),
sent repo im.elud,ea the equations necessary to predict the elastic
formation of the cladding, as defined in (3). esen




The formulation requires only that the shell loading be expressible in
Fourier Series. In Sec. III, Fourier Series are developed for bambooing
and spiral-line and point loads. Also, the thermoelastic stresses for a
hollow cylinder subjected to radial heat flow are considered for superposi-
tion. In Sec. IV, the numerical method of "successive elastic solutions"'’
is outlined. This approach, or isochronous stress-strain curves, can be
used to predict an approximation of the plastic strain that results from
either of the two cases of cladding loading considered in Sec. III.

II. ELASTICITY SOLUTION FOR A CYLINDRICAL SHELL UNDER
ARBITRARY MECHANICAL-LOADING CONDITIONS

A. Equilibrium Equations for Cylindrical Shells with Shear Effects

1. Governing Equations

To establish the governing equilibrium equations for solving
the elasticity problem of a right-circular cylindrical shell with periodic
loads on the middle surface, consider a shell
element as shown in Fig. 1, where the dot and
the prime denote 3( )/3¢ and ad( )/3x, respec-
tively.“. As in the membrane theory, the con-
dition for equilibrium of forces in the x direction

becomes
BNx 3N,
s Px = [
v 4; Be +pea = 0; (1)

in the ¢ direction,

ON N
LY LN EN
3 il Qcp o P2 0; (2)

and the equilibrium equation for the radial com-
ponents of force is :



and

M, M
e e P o = 0. &)
* ox N dp 20x

The last condition of equilibrium contains the moments about a radius of the
cylinder. Two couples formed by Nxgq and Nepx are the result of the twisting

moment Mtpx’ so that

B s il (6)

® ox =

By means of Eqs. 4 and 5, the transverse shears Q. and Q are eliminated
from Eqs. 2 and 3, and we obtain the following in terms of forces and

moments:

dN, ON oM, oM.
wi S Al D R 5 Ca 7
a ™ +a 57 3 a 37 tk Py? 0, (7)
and
M M M M
) X ox 2 X o
e +a Sty +a y +a oo +aNg - pa” = 0. (8)

Equations 1 and 6-8 are the governing equations. Since this set of four
equations still contains eight unknown stress resultants, it is necessary to
consider the deformationofthe shell. Actually, Eq. 6is an identity if Nx:p'
Nsser and Mcpx are expressed in terms of the displacements without shear
deformation.

2. Stress Resultants

For a circular cylinder, the stress resultants are conventionally 1
defined by the integration of stresses through the thickness as the following:

-

: i § e e =2
Qi g : 5 L - .r



t/2
M, = f «(1+= zda) (13)

@Z e, (14)
t/z

t/z

X (15)

g
I
v
N
o
L

t/z

and
t/2
Moy = -ft/z Tex® dz. (16)

By means of Hooke's law, these stresses can be determined in terms of the
strains and displacements associated with their derivatives.

3. Strains and Stresses \

If u, v, and w are the displacement components along the shell
coordinates, then the strains are defined“;as

ex = E'BEIT’ (17)
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and
E
P 22
Txp T 2(1+v) Yxo° (224

4. Stress Resultants--Displacement Relations and Shear
Deformations

Substituting Eqs. 20-22 and 17-19 into Egs. 9-16, we obtain the
stress resultants in terms of displacements and their derivatives. Two con-

stants are defined to simplify the following expressions: the extensional
rigidity

Et
D - , 23
o (23)

and the bending stiffness

Et?

K= —
2 (=R

(24)

Note that D and K depend on both the geometry and the material properties.

Making use of Eqs. 23 and 24, and neglecting higher-order terms
of t/a, Eqs. 9-16 become

_ f3u v dv v) K 3w ;
Nx D(a;*:ﬁ*;w S @5)

(26)




and

My, = —K(la' v)(a‘_w 5 3). (32)

These expressions are derived without considering shear deformation. Thus,

the deflections w in Egs. 29-32 refer only to bending. Denoting this by a
subscript b, we have, for Eqs. 29 and 30,

2 2
_ K o) Wb 2 ) Wb
Mo = ?(Wb ) dp? St 4 g
and
2 2
dw 9w
Mx=£az b+\,v b-aﬁ-v—al. (34)
2 a2 dep? Ox A

Considering z and Q  positive in the samedirection (see Fig. 2)
because of shear deformation, we have'®

Pr dwg ©)

W o‘ ax = ol 2 t—c;", (35)
! dx
Q+Q
il and, therefore,
XU
2 2
Fig. 2 e WL T o? 1% (36)
Shear Forces on a dox? dx? ox? ox? e
Plate Element. Neg.
No. MSD-55198. Similarly, we have
32w 2 3w 2 3N
vl L Sl SR R it (37)

w 3¢? dp? dep2 T

/indicates the bendmg moment due to thg incrme of radius

11
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EiY “"‘“” i If the shear deflection wg was due to ben.ding,
. it would cause outer fiber displacements (see Fig. 3)
%\w u = (-t/Z)(Bw/ax) and v = (-t/Za)(aw/acp), and shear
o strain Yyq = (l/a)(au/ax) + (Bv/ax). Expressing de-

XU  riyatives of w in terms of the shear forces, as in

- Heeas Eq. 35, this gives u = (1.2/2)(QX/G) and v =

3
— (1 -Z/Z)(Qcp/c')' Then we have
_au || l‘
0d¢ Y
\ Iy s]e] aQ
\ ‘\ ¥ 3 1—2(‘——x +a _a_qz) (40)
—— i @ 2aG\ 3¢ o
s T
Fig. 3 The portion of M:.px due to shear will be
Shear Strain Resulting
from Shear Loads. - t? - G 152 (an . R, ) (41)
Neg. No.MsD-55198.  Moxs * - T 7 -7 G \Te T2 ok

Combining Eq. 41 with Eq. 31 will yield

~ 2 a0 o0
M - KO-v)[ 2w 13 _ga_v+L2_a(_x+a_<a)_ (42)
ox 22 Ox0L: Pedo it ox 2tG \ 3¢ dx E

Similarly, combining Eq. 41 with Eq. 32 will yield

- Byl tw Shom el i/ BIek 3Q,
M"‘P'T[aaxaqp'aax+ﬁc'?¢‘+a?x' : (43}

The quantity due to shear effect, inside the parentheses of
Egs. 42 and 43, can be expressed as (see Figs. | and 4)

le} 3
a—= 4+

ox 3
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B. Differential Equations for Displacements

Substituting Eqs. 25-28 and 38, 39, 42, and 43 into Eqs. 1, 7, and 8,
and using Eq. 44, we obtain the following fundamental differential equations
for the displacements:

2

1§
A (1+k)
dx? 2a2

é 1 +yv 3y v dw

dp2 2a  3x9y o a2 ox

3 z 3 P
+k<_a.a.l"+1 Va_‘”>= D", (45)

x> 2a  dxdp?

1l +v Zu 1 ¥y 1 1 ow
S = 'O acpz+ 5 (1+3k)-a-x—z+az =

(Baw)ik w

2 axZacp & -’

(46)

and

v 1.zm<) 8n k(1 - 2u u , 1 ( 1.2Dk) dv
— el - — —— ol = o et ) mE
a( tG ax * 2a  dxdgt = 3%’ i a? ! tG dp
3 4 4 4 2,
_k(B-v) ¥ +k(azaw+2 dtw +_13w)+g(l_o.6n)aw
2 axzaqz x4 dx23dp? ‘az Ot a? tG dp?
(

2 2
1 ( l.ZDk") _Pr ot (a pr 13 Pr)
+-a—z 1 +k - tG w = -

—_— = 4
D 10G\ 3x2 uf a? dyp? (47)

7 where k = K/I)as,z = t’/lZaz.

Equatinns 45 and 46 are derived without consideration of shear de-
flections bmmmel the effect of shear deflections in these two directions is

uation 47 in the radial direction is corrected by M
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The terms u and v will be assumed in the same
to be determined by both substitu-
d 46.5 The constant C's can

of A with complex roots.
form as Eq. 48 with constant coefficients
tion and comparison in differential Egs. 45 an
be determined from the boundary conditions on the shell.

C. Particular Solutions for Infinite Shells

For an infinite circular shell, the particular solution with given
loading terms is to be determined. Let us assume the loading terms p..,

pcp’ and Py in trigonometric series form as
_ Ax
px = pxmn cCOos my cos —a—
= sin mg sin o A= nE (49)
Py = Ppmn 4 a S A
_ o AX
P, = Ppmp €OS M sin —
where p S e , and p,. - are independent constant coefficients. Intro-

ducing Eq. 49 into the differential Eqs. 45-47, we see that a particular solu-
tion exists in the form

Ax
u=U cos mg cos —,

mn

v = Vppp sin mg sin )‘—:,

and

W=Wmncosrmpsin)‘—:-,

4

w?gre Um. Vinne and W are unknown coefficients. Introducing
and 50 into Eqs. 45-47 and canceling the trigonometric terms, we a
the following set of linear equations for ‘

e




15

1
A21=-%\J>\m,

2 18 = N
et £=es 0] & 3K),
3

A; = m + vk)\zm,

= 1.2Dk 3 y e z)
A“")“’(l' G )'k(k G T

.2 =
1 Dk)+ 3 -y

2
tG 3 B,

A32 = m(l -

l.ZDkz) z( 0.6D) 3 2z ey
= - =R - — 2 =
Ass (1 + k e km“ (1 e + k(A *+2m"“A“+m®*)

and

- (A% +m?).
0a’G .

ST ES, S
1

Let Bij be the inverse matrix of Ajj. Then

Bii =Biz = Buslp o

‘ 2
al .
= of|Ba Bz Ba||Pomn | (52)

B3, Biz Bas||AsPrmn
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ﬁ_'_\)dw Kk dw P_x_ (53)

and

3 4
"(1 - l'tZGDk) dy n SELINCE

dZ
A 25 (54)

The loading terms will be

nmnx . nmx
P, = szn cos g 17 or prn L e

and

ey mmx
P, = Zprm ?m 1 oerrm GORTTIE (55)

By integration, Eq. 53 becomes

bitrary constant. Substituting Eq. 56

in 1 s of w onl




where
i v (2 5 l.ZDk),
a?(l - k) tG
Il 1.2Dk
N:———[l+k-vz+ (vz-k)],
ka*(l - k) tG
and
. mnux nmx
Bosein + En cos 1

o 1 v 1.2DK)\( Px ak dpx
Pl w A\ % D ks
kaz(l-k) a L D

The corresponding displacement will be

w = ZBI':n sin x_n?: 1 ZE;I cos nzx’

where

B, = Bm// [(?)4 - (52 + N]'
o) -

the term da/d: can be evaluated as

17

3
t pr
10G dxz]. (59)

(60)
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and

= 0, (63)

and

E 5 (et vey). {64

III. APPLICATIONS OF THE ELASTICITY SOLUTION

A. Periodic Radial Loading for Bambooing

1. Trigonometric Form

Consider a periodic radial loading on the middle surface of the
cylindrical shell as ’e

i~ . TX 2mx 4mx bmx i
—; —po+qlsan +poOST+p4COBT+p5COBT, (551 . -

where

p, = 0.318310,
q, = 05,
Py = —0:212207;




P
-PL=%+%sin g-%mz—;"-%cos‘—z‘-%’mgil
p———2:0.5"
:'L °.° 0.40(—
i-* 2 ‘—' =
1.0 0.30
0.8 ¥
o~
0.6/ 2 0.20
o
0.4 3
3
0.2 0.10]
A A
v SR - E W 3 : 2
Fig. 5. Radial Surface Load Distribution Fig. 6. Radial Displacement Correspond—
(trigonometric representation). ing to Loading Shown in Fig. 5.
Neg. No. MSD-55201. Neg. No. MSD-55202.

2. Valentin-Carey Normal Load Distribution

The normal surface traction exerted on a cylindrical cladding
due to heating of a fuel pellet can be expressed as'?

oy = p{l +1.8 exp[-%f“(l -%)][cos 5?'"( -%) R 5;‘( "42,')]} | (66)

for 0 <z =<4, o0.(-2) = 0.(z),

L or
(o)% b
b e = 1+ 1.8(cos ¢ - sin @) exp(-9), (67)

~ where ¢ = 54(1 -z/1)/a. To convert to an even periodic function, let

508,
P
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where k = SL/na. Expanding in Fourier Series,

©
ag + Z (ap cos n6+by sin nb),

2h,

1"
l‘—‘
H
=
=
i
0
o
w
=)
@
(o N}
B

and

v
b, = -—f £(8) sin n6 d6.
-

The first term may be evaluated as

il m
'ﬁ'f £(8) d6
=TI

[I'+1.8(cos kB + sin k6) exp(k6)] dB

ag

"
4]
—A
D

™
Ul
+f [1+1.8(cos k6 - sin kB) exp(-k8)] de} :
£ ‘
which becomes

-. - z{% + I&(ﬂiﬂ%) % exp(-5¢/a)|

(70)


file:///vhich
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become

AR 1.8[ n n
by | e -
T L+ (k-nf K+ (k+n)

(2k-n) sin (n-k)m+n cos (k-n)m

i k% + (k-n)

(72)

% exp(-kn)(2k+n) sin (k+n) T + n cos (k+n) n].

K+ (k+n)
The b, terms vanish, since £(6) is an even function. The Fourier Series

approximation for the radial loading is shown in Fig. 7 for n = 20 and
n = 50.

3.0

z.l'r—

o VALENTIN- CAREY

0——0 FOURIER SERIES WITH 20 TERMS

2 ® o e FOURIER SERIES WITH 50 TERMS

2.
g 2.0
g .8 Fig. 7
S 1.6

i Valentin-Carey Approximate
g 2 Normal Surface Loading.
2 1o Neg. No. MSD-55203.

0.8

O 20 40 60 80 100 120 140 160
DEGREE OF ANGLE

B. Tangential Loading for Bambooing

1. Linear Form

!“
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Fig. 8
8 Linear Form of Tangential Loading.
} Neg. No. MSD-55204.
S— 4 z
xR r 2> e+ T
2. Trigonometric Form

The trigonometric form of tangential loading can be expressed
as (see Fig. 9)

P X 3nx 5= o TS . 4nx
L = s, cos — + 83 cos — + 08 2= 4 sy 8in —— + 85 sin —— ([
B 1 z 2 z S3 COS 7 4 7 5 7 )
where
1 1 1 4 8
- e Rl il R g

1 |
Fig. 9 .
Trigonometric Form of Tangential
Loading. Neg. No. MSD-55205.
™ 2 t w—:—/l 5
1 " 3
] £
Lol 3

3. Va.lentin- Carey Tangential Surface La‘adigg

&cearding to Care«g and Valimtin g
it i :




ek

1l
o

£(6)4 = e(g-e)(1+ 8) for-Z<e<l

L

"
o

Representing this in Fourier Series,

2 @©
£(B) = (14 - ez) this z by sin nb,
nE]

since £(6) is an odd function with average value zero, where

1 /2
L) —f f(8) sin nd db.

m
/2
Then,
/2 2
b, = .l.f ("Te- e’) st 580
"J /2
L ul sin — 3 —
SE et

 therefore

» e

for -m <8 < —,

for = < B <.

e e = 0.7, by = 0.30191,

23

(76)

(77)
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The shear distribution can then be converted to 6 as

Trz & . (79)
— = f 0.
§188p £(8) nZ=l b Binm

The Fourier Series approximation for the tangential loading is shown in

Fig. 10 for n = 6.

----- VALENTIN-CAREY
*——= FOURIER SERIES WITH 6 TERMS

Fig. 10

Valentin-Carey Approximate Shear Sur-
face Loading. Neg. No. MSD-55206.

SHEAR LOADING

DEGREE OF ANGLE

C. Fourier Analysis of Spiral and Point Loadings on a Cylindrical Surface

The configuration of interest is shown in Fig. 11 along with the co-

ordinate system.

The cylindrical surface is expanded into a rectangular sheet as
shown in Fig. 12. The loading on the rectangular surface will be a line
load along one of the diagonals of the rectangular sheet.

L (2,2wa)

Fig. 11

Coordinate System for Spiral-wire
Wrap. Neg. No. MSD-55207.
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To calculate any particular coefficient apg of this series, we multiply both
sides by sin (sny/b) dy and integrate from 0 to b. Observing that

b
. mmwy . smy 0 when n ;( s
8in === sin e dy
0 b/Z when n s

yields
| 'b @
| et
3 f f(z, v ) e in % b= L. Z ams sin ik (81)
: a
S 0 m=1

v

Multiplying both sides of the equation by sin (rﬁx/a) dx and integrating from
0 to a, we obtain

a rb
—/; /; f(x,y) sin rzx sin %X dx dy = %Ears'

and, therefore,

4 e X sTy
a.g = E,/; ‘/; f(x,y) sin —_ sin = dx dy. (82)

Applying this result for a single load p that is uniformly distributed over
a small rectangular area (see Fig. 13), we have

.
= : a & p f§+“/1/‘n+v/3 sin b 21, dx dy
mn = oo s U
abuv E-u/z J1 a b

-v/2

DT e
sin __'_ﬂ_ sin
b

16? i m:rg mmu ooy (83)

2a

— 0, we have
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For a given value of (§,7), the loading function will be

-] @

4 = et o Al R BT 85

q = f(x,y,6,M) = Z Z a_p sin - sin 5 o sin == sin TR (85)
m=1'n=1

If we assume a = 4 and b = 2ma,, we can convert the result to a circular
cylindrical surface with periodic point loads, as shown in Fig. 14. If 4 is
assumed to be sufficiently longer than the diameter of the cylinder, we may
consider this example as a circular cylindrical surface with a concentrated
radial point load.

Fig. 14

A= & Coordinate System for Point
y 'ﬁ L
o X Loading. Neg.No.MSD-55210.

2. Line Loading

If the w coordinate is set along the diagonal of the line load
(see Fig. 15) and if an arbitrary point is located on the line at (E,MN), then

we have
(a) tan 6 = B or 6 = tan"g,
a a

(bl EN=w cos 8,

I

1
g
w
o
5

e

and

(c) the loading function

fxm

0

Q= f(X:Y.g.'ﬂ) dw,

a ZZ 5 *in T sin
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or finally,

@
z 2pva® + p? sip X mmy

= = in — sin ——= . (87)
m=1
y
Fig. 15
Coordinate System for Diagonal-line
I3 P%in Loading. Neg. No. MSD-55211.
w, o m
x

3. Remarks

The expression g may not converge outside the region of in-
terest, but, for engineering purposes, it should be a good approximation for
the line loading. When a numerical procedure isusedto evaluate the stresses
and strains, the approximation should always be convergent.

D. Thermal-stress Distribution

For a cylinder subjected to radial heat flow, the thermoelastic stress
distribution is given by'®

e R B SO (1 b—z) sl
e 15 y) tn (b/a) r Ry g2 '

«EAT b a? b? b
= 1 i e B e |
S 2(L-v}in (b7a)[ kil b - az( 5 [

and




IV. CREEP DEFORMATION ANALYSIS

ations occur at elevated tempera-

Since the actual cladding deform . .
nly a rough indication of

tures, the preceding elastic solutions can give O i
the true behavior of the cladding. In fact, by themselves, the elast¥c solu-
tions serve only as a limiting-case check for more general inelastfc solu-
tions. The elastic solutions may be supplemented, however, to estimate
the inelastic deformations. This can be done either through the use of

isochronous stress-strain curves, or by using the "method of successive
113

elastic solutions."
The use of isochronous stress-strain curves, which give the total

strain at various times for constant stress loadings, has the great advantage
of simplicity, although the method lacks accuracy, and usually the creep data
required for construction of the curves are not available. For AISI Type 304
or 316 stainless steel, however, isochronous stress-strain curves are avail-
able,'” and these materials are commonly used for fast-reactor fuel-element
cladding. It may also be argued that this type of simplified inelastic analysis
would be justified since other assumptions already have been made (see

Sec. V), and since the goal of the present analysis is only to assess the rela-
tive importance of the problem.

Cladding bambooing is intensified, however, by thermal cycling, and
a method to predict creep deformations resulting from a prescribed thermal
and mechanical loading history is necessary for a more accurate assess-
ment of the total deformation. The method of successive elastic solutions
is appropriate to this objective, although difficult to implement, even for the
simple geometry considered here. To use this incremental numerical
method, inelastic deformation terms representing the total accumulated
plastic deformation and the increment of deformation appropriate to the
time step must be included in the constitutive relations. An empirical clad-
ding creep law is used in conjunction with a flow rule to obtain the inelastic
deformation increment. The constitutive relations are then combined with
the usual field equations and solved iteratively, since the stress depends on
the strain increment and the strain increment depends on the stress. Ex-
amples of the use of this method have been presented elsewhere.!’'?

An elastic-plastic, finite-element or finite-diffe
would use the elastic solutions developed here only
ing case of elastic behavior. These numerical tech
as the method of successive elastic solutions,
of computer time, and the treatment of cycl
by finite-element techniques has not b

eve



solved numerically and combined with a procedure for estimating the in-
elastic deformations. The procedure most readily used for this purpose
appears to be isochronous stress-strain curves. If the results indicate
potentially serious problems, the effort involved in a more detailed anal-
ysis, coupled with an experimental program, may be justified.

V. DISCUSSION OF MAJOR ASSUMPTIONS

The internal loading on the cladding due to the fuel will certainly
change, not only because of changes in operating conditions but because of
the changes in the fuel geometry that result from fuel cracking, swelling,
and creep. These load changes due to fuel deformations have been ne-
glected. The loading will also be affected by the cladding deformations,
and, if the local cladding deformations become significant in comparison
with the global strains, the assumption of a right-circular, cylindrical ge-
ometry, upon which the solution in Sec. II is based, becomes questionable.
Cladding swelling during irradiation and local thermal variations have also
been neglected. In the supplementary inelastic analysis proposed in Sec.1V,
sparse uniaxial creep data must often be used to predict strains under multi-
axial loading conditions, and a hardening law must be assumed. A creep-law
formulation involving primary creep and/or fluence effects must be assumed,
even though such a formulation is, at present, only poorly known. The anal-
ysis must therefore be viewed as only a first step toward the understanding
of a very complex problem, and even predictions made for unirradiated
cladding subjected to monotonic loadings must be supplemented by experi-
mental tests.
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